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Abstract

In this paper, the influence of transverse cracks in a rotating shaft is analysed. The paper addresses the
two distinct issues of the changes in modal properties and the influence of crack breathing on dynamic
response during operation. Moreover, the evolution of the orbit of a cracked rotor near half of the first
resonance frequency is investigated. The results provide a possible basis for an on-line monitoring system.

In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by
using the alternate frequency/time domain approach. It is shown that this method evaluates the nonlinear
behaviour of the rotor system rapidly and efficiently by modelling the breathing crack with a truncated
Fourier series. The dynamic response obtained by applying this method is compared with that evaluated
through numerical integration. The resulting orbit during transient operation is presented and some
distinguishing features of a cracked rotor are examined.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The influence of a transverse crack in the shaft of rotating machines on the associated dynamic
behaviour has been a focus of attention for many researchers [1–35]. The presence of a crack may
lead to a dangerous and catastrophic effect on the dynamic behaviour of rotating structures and
cause serious damage to rotating machinery. Therefore, the timely detection of a rotor crack
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

m non-dimensional crack depth
O rotational speed
e eccentricity of the unbalance mass
Lcrack position of the crack
f cracked

i ith natural frequency for the cracked
system

f uncracked
i ith natural frequency for the un-

cracked system
m number of Fourier coefficients retained
%Ci percentage change between the ith

cracked and uncracked natural frequen-
cies

x displacement of the degree of freedom
_x velocity of the degree of freedom

€x acceleration of the degree of freedom
M mass matrix of the rotor system
K stiffness matrix of the rotor system
Kcrack stiffness matrix for the cracked element
C damping matrix of the rotor system
G gyroscopic matrix of the rotor system
D global damping matrix of the rotor

system
Q vector of gravity force for the rotor

system
W vector of imbalance force for the rotor

system
X matrix of the Fourier coefficients asso-

ciated with the displacements of the
rotor system
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would potentially avoid severe damage and expensive repairs due to the failure of rotating
machinery as well as assure the safety of personnel.
Generally, two different approaches are attempted to identify the presence of a crack in rotating

structures. The first approach is based on the fact that the presence of a crack in rotating shaft
reduces the stiffness of the structure, hence reducing the natural frequencies of the original
uncracked shaft. Various theoretical and experimental works [3–10] performed over the last three
decades have indicated that the change in modal properties (natural frequencies and modes
shapes) may be useful for the detection of a crack, as well as for the identification of both crack
depth and location. Moreover, the influence of opening and closing of crack due to the shaft self-
weight for various orientations of the shaft has been investigated [3,11] and showed the
effectiveness of the change in natural frequencies versus the orientation of the shaft to detect the
orientation of the crack front. Another approach of crack identification is based on the
modification of the dynamic responses of the crack rotor during its rotation. Indeed, dynamic
analysis of the cracked rotor based on theoretical and experimental studies has been a subject of
great interest for the last decades [12–22]. Wauer [1] reviewed a literature survey on the state-of-art
of the dynamics of cracked rotors. Mayes and Davies [11] analysed the response of a multi-rotor-
bearing system containing a transverse crack in a rotor both experimentally and theoretically.
Gasch [12,13] studied the dynamic behaviour of a simple rotor with a cross-sectional crack and
the associated stability behaviour due to the crack and imbalance. Henry and Okah-Avae [23]
investigated the effects of the gravity and unbalance on the dynamic behaviour of a crack shaft.
Moreover, many studies [3,20,22,24–28] indicated the change in dynamic responses and more
particularly the tendency of the rotor to exhibit a harmonic component at twice shaft speed
close to half any resonance frequency. Indeed, due to the shaft self-weight and the rotation of
the rotor, the crack opens and closes during a complete revolution of the rotor; hence the stiffness
of the shaft varies. This opening and closing mechanism, which is called the breathing effect,
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induces vibration of the second and higher harmonics of rotating speed in frequency domain.
Although the presence of this twice per revolution component can indicate the possibility
of the presence of a crack, it is alsowell known that the presence of such a component can be
generated by shaft misalignment, asymmetric shaft, looseness of bolts and nuts, or a range
of other nonlinearities [26,27]. Therefore, this feature, in itself, is insufficient to indicate the
presence of a transverse crack in rotors. In this way, the additional observation of the orbits can
be useful for revealing the presence of a crack [24–29]. Effectively, near the speed range of half any
resonant frequency, the orbit changes from a single loop to double loops with speed, and then an
internal loop may appear. This observation is the signature of the presence of a crack that
indicates the change in amplitude and phase at half any resonance speed, and is also a
characteristic for signals containing two vibration components with the same direction of
precession [24,27].
The aim of this paper is to investigate these effects by taking into account the nonlinear

dynamical behaviour due to the breathing transverse crack in order to obtain some indications
that might be useful in detecting the presence of a crack in rotating system. Some parametric
studies regarding the location and depth of cracks are carried out in order to show their influence
on the change in frequencies. Next the influence of a transverse breathing crack on the response of
a rotor model is investigated using the alternate frequency/time domain method [36–38] with a
path-following procedure in order to predict the nonlinear dynamics and also the twice per
revolution component close to half-resonance response associated with the presence of a
breathing crack. It is shown that the nonlinear behaviour of the rotor system with a breathing
crack may be obtained by modelling the crack with a truncated Fourier series. In order to validate
this approach, the results are compared with those obtained through numerical integration.
Moreover, it is demonstrated that a rotor with a breathing crack, which opens and closes during
rotations, shows a nonlinear dynamic behaviour due to the variation of the rotor’s stiffness during
its rotation. Finally, the nonlinear behaviour of the crack rotor at half the first shaft resonance
speed is calculated, and the influence of the crack depth is presented to provide information for an
on-line identification of rotor cracks.
2. Mathematical model

This section describes the derivation of the system model, which is used in the subsequent
analysis.

2.1. Rotor system

The shaft is discretized into a number of Timoshenko beam finite elements having four degrees
of freedoms at each node [39]:

ðMe
T þ Me

RÞ €x
e
i þ ðCe

R � OGe
RÞ _x

e
i þ Ke

Bxe
i ¼ Qe

i ; (1)

where Me
T and Me

R are the rotary and translational mass matrices of the shaft element. Ce
R; Ge

R;
and Ke

B are the external damping, gyroscopic, and stiffness matrices, respectively. Qe
i defines the

gravity force vector for the shaft. O is the rotational speed and the factor of damping for the shaft.
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The damping is taken as classical for the sake of simplicity and Ce
R ¼ bKe

B; where b is a constant
factor of proportionality and internal rotor damping has been neglected.
The modelling of the rigid discs is given by

ðMd
T þ Md

RÞ €x
d
i � OGd _xd

i ¼ Qd
i þ Wd

i ; (2)

where Md
T ; Md

R; and Gd
R are the translational mass, rotary mass and gyroscopic matrices,

respectively. Qd
i consists of the weight of the disc. Wd

i defines the unbalance forces due to disc
having mass m with an eccentricity e:
Finally, the discrete bearing stiffness coefficients are placed at the corresponding degrees of

freedom and the equation of motion for the complete rotor system is defined as follows:

M €x þ ðC þ OGÞ _x þ Kx ¼ Q þ W; (3)

where M and G are the mass and gyroscopic matrices, including mass and gyroscopic matrices of
the shaft and rigid discs. C and K are the external damping and stiffness matrices of the shaft. Q

and W define the vector of gravity force and imbalance force for the complete rotor system.

2.2. The cracked rotor

In this section, the modelling of the crack and the breathing mechanism are discussed briefly.
Mayes and Davies [3] demonstrated that a transverse crack in a rotor shaft can be represented by
the reduction of the second moment of area DI of the element at the location of the crack. By
using Rayleigh’s method, they obtained that the change in DI verified [3,5]

DI=I0

1� DI=I0
¼

R

l
ð1� n2ÞF ðmÞ; (4)

where I0; R; l; n; m; and FðmÞ are the second moment of area, the shaft radius, the length of the
section, the Poisson’s ratio, the non-dimensional crack depth, and the compliance functions varied
with the non-dimensional crack depth m; respectively. The non-dimensional crack depth m is given
by m ¼ a=R; where a defines the crack depth of the shaft as illustrated in Fig. 1. Although FðmÞ can
be derived from the appropriate stress factor, Mayes and Davies indicated that a good
approximation of this function can be achieved by considering the fractional change in the second
moment of area measured at the crack face. Their observations were validated by experimental
tests consisting of measuring the two functions FX ðmÞ and FY ðmÞ [3] for both the X and Y
directions, which indicated the direction of the crack front and the orthogonal direction
associated as illustrated in Fig. 1. The values of the second moment of area with the new centroid
associated are given in Appendix A. Then the stiffness matrix due to the transversal crack Kcrack

can be obtained at the crack location, by using standard finite elements [5].
When the rotor is cracked, the opening and closing behaviour due to the rotor rotation and

shaft self-weight results in a time-dependent stiffness. To accurately predict the dynamic response
of the rotor system with a breathing crack, an appropriate crack model is essential. Many
researchers have studied this problem [11–13,17] and various crack opening and closing models
have been developed. Penny and Friswell [16] compared different crack models: the hinge model
[13], where the breathing switches it from open to closed state abruptly during the rotation of the
shaft; the crack model of Mayes and Davies [11], where the opening and closing of the crack were
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Fig. 1. Model of stiffness variation for the breathing crack.
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described by a cosine function, and finally the crack model of Jun et al. [22] based on fracture
mechanics, where the coupling stiffness as well as the direct stiffness are calculated as the shaft
rotates (and so the crack opens and closes). Penny and Friswell [16] demonstrated that for
monitoring using low-frequency vibration, simple models of crack are adequate and sufficient for
the prediction of the dynamic behaviour of a rotor with breathing crack, as well as the predicted
whirl orbit at the steady-state 2� harmonic of rotor speed. The extent of crack opening will be
determined by the proportion of the crack face which is subject to tensile axial stresses. By
assuming that the gravity force is much greater than the imbalance force, the function describing
the breathing crack [1,3,4,11–13,16,17] may be chosen as

f ðtÞ ¼ 1
2ð1� cosðOtÞÞ; (5)

where O is the rotational speed of the rotor. As illustrated in Fig. 1, for f ðtÞ ¼ 0; the crack is
totally closed and the cracked rotor stiffness is equal to the uncracked rotor stiffness. For f ðtÞ ¼ 1;
the crack is full open.
Finally, the dynamics equation of the rotor with a breathing crack, in this linearized

approximation, can be defined as

M €x þ ðC þ OGÞ _x þ ðK � f ðtÞKcrackÞx ¼ Q þ W; (6)

where €x; _x; and x are the acceleration, velocity and displacement of the degree of freedom of the
cracked rotor system. M; C; G and K define the mass, damping, gyroscopic and stiffness matrices,
respectively. Q and W are the vector of gravity force and imbalance force, respectively. Kcrack is
the stiffness matrix due to the crack and f ðtÞ the function representing the breathing effect.
In this study, a rotor shaft of 1m length and 10mm diameter, two discs of 40mm diameter and

15mm thickness are situated at 0.3m of each end of the shaft, as illustrated in Fig. 2. A crack is
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Fig. 2. Rotor model with two discs and a cracked element.

Table 1

Detail of the rotor model

Parameters Physical dimension

Length of the shaft 1m

Diameter of the shaft 0.01m

Young’s modulus of elasticity E 2:1� 1011 Nm�2

Shear modulus G 7:7� 1010 Nm�2

Poisson ratio n 0.3

Density r 7800kgm�3

Position of disc 1 0.3m

Position of disc 2 0.7m

Outer diameter of discs 1 and 2 0.04m

Inner diameter of discs 1 and 2 0.01m

Thickness of discs 1 and 2 0.015m

Location of the crack Lcrack 0.375m

Non-dimensional crack depth m 1

Mass unbalance 0.005 g

Phase unbalance 01

Eccentricity of the mass unbalance 0.02m

Coefficient of damping b 10�5
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added at one-third of the left end and a mass m at the eccentricity e is placed on the first disc. All
the values of the parameters are given in Table 1.
3. Natural frequencies

In this section, the changes in the natural frequencies of the rotor, which is the common first
step in the diagnosis of a crack, have been examined. The crack position, depth and the
orientation of the crack have been varied.
Table 2 gives the values of the natural frequency for the uncracked and cracked shaft with the

variation of the non-dimensional crack depth m: Table 3 gives the values of the natural frequency
for the uncracked and cracked shaft with the variation of the crack location (with m ¼ 1).
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Table 2

Evolution of the natural frequencies with the non-dimensional crack depth ðLcrack ¼ 0:375mÞ

Uncracked m

0.25 0.5 0.75 1

1st frequency (Hz) 16.597 16.581 16.549 16.479 16.257

2nd frequency (Hz) 16.597 16.582 16.559 16.543 16.541

3rd frequency (Hz) 65.367 65.290 65.131 64.787 63.755

4th frequency (Hz) 65.367 65.292 65.178 65.102 65.088

5th frequency (Hz) 176.038 176.032 176.015 175.980 175.866

6th frequency (Hz) 176.038 176.032 176.020 176.012 176.011

Table 3

Evolution of the natural frequencies with the location of the crack Lcrack (non-dimensional crack depth m ¼ 1)

Uncracked Position of the crack Lcrack

0.025m 0.225m 0.475m 0.725m 0.975m

1st frequency (Hz) 16.597 16.593 16.399 16.169 16.332 16.593

2nd frequency (Hz) 16.597 16.597 16.564 16.525 16.553 16.597

3rd frequency (Hz) 65.367 65.316 63.673 65.321 63.779 65.323

4th frequency (Hz) 65.367 65.359 65.078 65.360 65.094 65.360

5th frequency (Hz) 176.038 175.756 173.312 171.737 174.523 175.612

6th frequency (Hz) 176.038 175.993 175.559 175.295 175.775 175.970
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The natural frequencies associated with the vertical (first, third and fifth modes) and horizontal
(second, fourth, and sixth modes) frequencies are equal in the case of an uncracked shaft, but are
different for the cracked rotor due to the presence of the crack. The highest changes in natural
frequencies occur in the vertical mode due to the orientation of the crack and the shaft self-height.
In order to compare the frequencies of the cracked and uncracked shaft, the percentage change in
natural frequencies is defined as follows:

%Ci ¼
f uncracked

i � f cracked
i

f uncracked
i

� 100; (7)

where i defines the ith frequency of the system.
Fig. 3 shows the percentage changes in the first and second natural frequencies with the rotation

of the shaft for various non-dimensional crack depths m: In this case, the area of the open crack
due to the shaft’s self-weight is calculated at each orientation of the shaft [5]. As observed
previously by Lees and Friswell [5], this simple procedure is sufficient to reflect the change in
natural frequencies due to the rotation of the shaft and the physics associated. If the non-
dimensional crack depth m is equal to 1 (corresponding to the loss of half the shaft’s area), it
appears that the crack is fully open at a orientation of 01, and fully closed at 1801, as illustrated in
Fig. 3(a). Moreover, one observes that for a non-dimensional crack depth m less than 1, the
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Fig. 3. Changes in the first and second natural frequencies with the rotation of the shaft and the non-dimensional crack

depth m (— m ¼ 0:25; - - - m ¼ 0:5; � � � � � � � m ¼ 0:75; – - – - – m ¼ 1). (a) First frequency; (b) second frequency.
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maximum change in frequencies is defined for ranges of shaft orientations that increase when the
non-dimensional crack depth m decreases. This reflects the fact that the crack and the equivalent
area of the cracked shaft due to the shaft self-weight are completely open and closed for ranges of
shaft orientations. Of course the change in the natural frequencies increases when the crack depth
increases.
The crack depth, the location of the crack, and the rotation of the shaft clearly effect the natural

frequencies of the rotor and these changes in modal properties can be used as an identification of
transverse crack in rotating machines. However, this approach is time consuming and requires the
knowledge of the original natural frequencies of the rotor in its uncracked condition. This last
point may not be easy to obtain due to the fact that since the modal tests have been carried out,
the natural frequencies may have been modified by rotating machines’ operation during time.
Therefore, the use of the dynamic response in order to identify the presence of a transverse crack
appears to be unavoidable and the most convenient.
4. Nonlinear dynamical behaviour

Due to the presence of a breathing crack and the mathematical model associated, the
determination of the dynamic behaviour of the rotor requires considerable computational
resources by using a classical numerical integration. In order to avoid these computational
problems, one of the most efficient and systematic approaches is the use of the harmonic balance
method [38] that permits the discretization of the unknown functions in time by using their
Fourier components, which are assumed to be constant with respect to time. Such methods
include the incremental harmonic balance method [40], the Fast Galerkin method [41,42], and the
alternate frequency/time domain (AFT) method [36–38].
In this study, the AFT method is applied in order to obtain the nonlinear response of the rotor

with the breathing crack.
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4.1. AFT method

The system defined in Eq. (6) can be written more generally as

M €x þ ðC þ OGÞ _x þ ðK � f ðt; xÞKcrackÞx ¼ Q þ W; (8)

where there is no restriction to the unbalance magnitude.
In the linearized crack model, it is usual to represent the portion of the crack below the neutral

axis as being open. There are a number of approaches differing only in detail, but one such
approach is that of Mayes and Davies [3]. The area of the crack face below the neutral axis is
calculated and this is then represented with a chordal equivalent crack having the same area. The
important approximation here is that the neutral axis is usually taken as the centroid of the shaft,
but this is not exact.
With any non-zero deflection, the centre line of the shaft will be stretched and hence there will

be a tensile stress and, this being so, for a shaft deflected under gravity, the true neutral axis will be
above the centre line. For small vibration amplitudes, the error introduced by this approximation
is relatively minor, simply reducing the effective crack by a constant factor. However, for
appreciable vibration amplitudes the error becomes significant and time dependent. It is beyond
the scope of the present paper to analyse the sensitivity of this effect, but the correction
(nonlinear) terms are important when the vibration amplitude is appreciable relative to the
catenary.
In the present paper, the position of the neutral axis at the crack location has been re-calculated

at each time step in order to give an accurate model of the crack dynamics.
This nonlinear equation may be re-written as

M €x þ DðOÞ _x þ Kx þ fðx;O; tÞ � gðx;O; tÞ ¼ 0; (9)

where M; D and K are the mass, the damping and the stiffness matrices. f and g are the vectors
containing the nonlinear expressions due to the breathing crack and the vector for the imbalance
and gravity force, respectively. In the absence of response to unbalance, the function f becomes a
linear function of x; for non-negligible imbalance, the addition stresses interact with those arising
from the (gravity-induced) catenary, so changing the neutral axis, and hence the active cross-
section of the crack.
Setting x ¼ xk þ Dx; _x ¼ _xk þ D _x and €x ¼ €xk þ D €x (where k defined the kth iteration process),

one considers the truncated Fourier series expansion

x ¼ X0 þ
Xm

i¼1

½X2i�1 cosðiOtÞ þ X2i sinðiOtÞ	; (10)

where X0; X2i�1 and X2i are the Fourier coefficients of x; and the associated truncated Fourier
series expansion for Dx

Dx ¼ DX0 þ
Xm

i¼1

½DX2i�1 cosðiOtÞ þ DX2i sinðiOtÞ	; (11)
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where DX0; DX2i�1 and DX2i are the Fourier coefficients of Dx: The matrices of Fourier
coefficients of x and Dx is indicated and arranged as follows:

X ¼

X 1;0 � � � X i;0 � � � X n;0

..

. ..
. ..

.

X 1;2j � � � X i;2j � � � X n;2j

..

. ..
. ..

.

X 1;2m � � � X i;2m � � � X n;2m

2
666666664

3
777777775

(12)

and

DX ¼

DX 1;0 � � � DX i;0 � � � DX n;0

..

. ..
. ..

.

DX 1;2j � � � DX i;2j � � � DX n;2j

..

. ..
. ..

.

DX 1;2m � � � DX i;2m � � � DX n;2m

2
666666664

3
777777775
; (13)

where X i;j and DX i;j define the jth component of the Fourier coefficients for the ith degree of
freedom for the nonlinear system. The number of harmonic coefficients m is selected in order to
consider only the significant harmonics expected in the solution. By replacing x and Dx by their
Fourier series, one obtains ð2m þ 1Þ � n linear algebraic equations

AX þ F � G þ A � DX ¼ 0; (14)

with

A ¼

K

�O2M þ K OD

�OD �O2M þ K

" #

. .
.

�O2M þ K jOD

�jOD �j2O2M þ K

" #

. .
.

�O2M þ K mOD

�mOD �m2O2M þ K

" #

2
66666666666666666664

3
77777777777777777775

:

(15)

F and G represent the Fourier coefficients of the function f and g; respectively. F is difficult to
determine from the Fourier coefficients directly due to the dependence in time for this function.
Hence, F can be calculated by using the following path (AFT) as follows:

X�!
G�1

xðtÞ�!fðtÞ�!
G

F; (16)
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where G and G�1 define the discrete Fourier transform (DFT) from time to frequency
domain, and from frequency to time domain, respectively. The DFT from time to frequency
domain is given by

Gij ¼

1

2m þ 1
for i ¼ 1;

2

2m þ 1
cos

ðj � 1Þip
2m þ 1


 �
for i ¼ 2; 4; . . . ; 2m; j ¼ 1; 2; . . . ; 2m þ 1;

2

2m þ 1
sin

ðj � 1Þði � 1Þp
2m þ 1


 �
for i ¼ 3; . . . ; 2m þ 1:

8>>>>>>><
>>>>>>>:

(17)

and from frequency time domain

G�1
ij ¼

1 for j ¼ 1;

cos
ði � 1Þjp
2m þ 1


 �
for j ¼ 2; 4; . . . ; 2m; i ¼ 1; 2; . . . ; 2m þ 1;

sin
ði � 1Þðj � 1Þp

2m þ 1


 �
for j ¼ 3; . . . ; 2m þ 1:

8>>>>><
>>>>>:

(18)

Finally, the error vector R is given by

R ¼ AX þ F � G (19)

and the associated convergence values are defined by

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ
Xm

j¼1

ðR2
2j�1 þ R2

2jÞ

vuut (20)

and

d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX2

0 þ
Xm

j¼1

ðDX2
2j�1 þ DX2

2jÞ

vuut : (21)

The global procedure of the AFT domain method is illustrated in Fig. 4.

4.2. Path continuation

Usually, the dynamics of the system and the solution associated have to be calculated at
different parameter values consecutively (in this study, the considered parameter is the speed of
shaft rotation). In order to reduce the time required for the calculation, the path-following
technique can be used [38]. One considers the estimation of the neighbouring point on the solution
branch by using the Lagrangian polynomial extrapolation method with four points. So, one
assumes that four points on the solution branch are obtained a priori in order to begin the
extrapolation scheme. The varied parameter is the speed rotation of the shaft O: Any point on the
solution branch is represented at Xi; where Xi is the Fourier coefficient of x: The arc length
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Fig. 4. AFT domain method.

J-J. Sinou, A.W. Lees / Journal of Sound and Vibration 285 (2005) 1015–10371026
between two consecutive points Xiþ1 and Xi is given by dliþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXiþ1 � XiÞ

TðXiþ1 � XiÞ
p

for i ¼ 0; . . . ; 2: Next, the arc length parameters are calculated as follows:
L0 ¼ 0;

L1 ¼ dl1;

L2 ¼ L1 þ dl2;

L3 ¼ L2 þ dl3;

L4 ¼ L3 þ Dl: (22)

Finally, by using the Lagrangian extrapolation scheme, the estimated point at the distance Dl
might be defined by

X4 ¼
X3
i¼1

Y3
j¼0
iaj

L3 � Lj

Li � Lj


 �
Xi

0
B@

1
CA for i ¼ 0; . . . ; 3: (23)
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4.3. Results and discussions

The dynamic response of the rotor with the breathing crack is obtained by using the AFT
method and the path-following procedure. The Fourier series is truncated in order to consider
only the significant harmonics. All the values of the parameters (damping, non-dimensional crack
depth m; mass unbalance, eccentricity of the mass unbalance, etc. . . .) are given in Table 1. It may
be noted that the crack depth, the level of damping, and the level of unbalance are important
parameters because all these three influence the magnitude of the nonlinear term.
In order to demonstrate the capability of the AFT domain method for determining a good

approximation of the dynamic response of the rotor with a breathing crack, a comparison is
performed with results obtained by using direct numerical integration such as the Runge–Kutta 4.
Fig. 5 shows the comparison between time histories of the vertical and horizontal displacements of
the cracked rotor around the crack position ðL ¼ 0:375mÞ; evaluated through numerical
integration and the AFT method for various numbers of harmonics m: The associated orbits are
plotted in Fig. 6. These results highlight that the periodic solution ðm ¼ 1Þ does not provide a
good approximation of the solution but that the second harmonic coefficients (m ¼ 2) are
sufficient to obtain an accurate evaluation of the dynamic response of the rotor with a breathing
crack. Therefore, these results clearly demonstrate that the presence of a breathing crack results in
a nonlinear dynamical behaviour.
Fig. 5. Evolution of the horizontal and vertical displacements at the position of the crack (Lcrack ¼ 0:35m) for f ¼

8:285Hz (— Runge–Kutta 4, – - – - – m ¼ 1; - - - m ¼ 2).
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Fig. 6. Evolution of the orbit at the position of the crack (Lcrack ¼ 0:35m) for f ¼ 8:285Hz (— Runge–Kutta 4, – - – - –

m ¼ 1; - - - m ¼ 2).
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Fig. 7 shows the horizontal and vertical steady-state responses of the cracked and uncracked
shafts, at the position of the shaft L ¼ 0:375m:Moreover, Fig. 8 shows the horizontal and vertical
steady-state responses of the cracked shaft for each node of the shaft. Fig. 7 indicates a decrease in
the first and second vertical natural frequencies as indicated at marks 3 and 5. This change is due
to the reduction in system stiffness resulting from the presence of the transverse crack. Although
the first and second horizontal natural frequencies decrease due to the presence of the crack, it
may be observed that the differences between the cracked and uncracked frequencies are very
small and very difficult to detect in practice, as indicated at marks 7 and 8 in Fig. 7.
In the case of the cracked shaft, 2� harmonics are observed in the horizontal and vertical

directions at one-half of the first vertical and horizontal frequencies, as illustrated at marks 2 and
6 in Figs. 7 and 8. 3� harmonics in the vertical direction for the first frequency are also present at
one-third of the first vertical natural frequency, as shown in Figs. 7 and 8 at mark 1, and
moreover, 2� harmonics in the vertical direction for the second vertical frequency at one-half of
the second vertical frequency. It should be noted that there are no visible 3� harmonics of the first
horizontal natural frequency and 2� harmonics of the second horizontal natural frequency.
Considering the rotor without a crack, no harmonics are predicted for the dynamic behaviour of
the rotor. In this case, the dynamic response is purely synchronous.
In order to compare the dynamic behaviour of the cracked and uncracked shaft near one-half

and one-third of the natural frequencies, the differences between the cracked and uncracked
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Fig. 7. Comparison between the cracked and uncracked shafts—horizontal and vertical displacements at the position

L ¼ 0:35m (- - - - uncracked, — cracked).
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horizontal and vertical amplitudes are calculated as follows:

DX ¼ jMaxðX cracked � XuncrackedÞj (24)

and

DY ¼ jMaxðY cracked � YuncrackedÞj (25)

at each element of the shaft. X cracked; Y cracked; Xuncracked; and Yuncracked define the horizontal and
vertical displacements for the cracked and uncracked shaft, respectively. Therefore, Fig. 9 shows
clearly the differences DX and DY between the cracked and uncracked rotor. As illustrated in Fig.
9(A) and (B), the differences DX and DY increase at the one-half and one-third of the first
horizontal and vertical frequencies. Moreover, the differences DX and DY at each element of the
shaft indicate clearly the first mode shape with the maximum difference obtained at the middle of
the shaft. Fig. 9(C) shows the differences DX and DY around one-half of the second horizontal
and vertical frequencies. In this case, the differences DX and DY also increase one-half of the
second horizontal and vertical frequencies and indicate the deformations of the second mode
shape with a node in the middle of the shaft and the maximums of DX and DY are obtained at
one-fourth on each end of the shaft.



ARTICLE IN PRESS

Fig. 8. Vertical and horizontal displacements for the cracked shaft.
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As explained previously, the diagnosis of the presence of a crack in rotating machinery based
only on the appearance of a harmonics response at half the natural frequency in the spectrum may
be misleading. So, one of the features to detect the presence of a transversal crack in a rotating
shaft is the use of the evolution of the orbits during time around one-half of the resonance
frequencies.
Now, the attention is focussed on the evolution of the orbits around one-half of the natural

frequencies. Fig. 10 shows the evolution of the rotor’s orbits. It is shown that a distortion in the
orbit appears and increases when the speed of the rotor increases. Next, the shape of the orbit
changes from a form with only one loop to a double loop. And finally, when the speed of the
cracked rotor is passing through nearly half of the critical speed, the orbit changes from a double
loop to an inside loop (a loop containing another small loop inside) that indicates the change in
both the phase and the amplitude of the harmonic components. This dynamic behaviour of the
rotor through the passage of half of the rotor speeds is the signature of a crack in the rotor.
Moreover, Fig. 11 shows the orbit obtained close to a third of the first critical speed, half of the
first critical speed, and half of the second critical speed. It may be observed that the change in the
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Fig. 9. Differences DX and DY between the cracked and uncracked shaft for (A) the 3� resonance of the first

frequency; (B) the 2� resonance of the first frequency and (C) the 2� resonance of the second frequency.
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dynamic behaviour is also detected near half of the second critical speed, with the formation of
double loops at one end of the shaft and a distortion form on the other end (Fig. 11(c)). Showing
the dynamic behaviour at third of the first critical speed (Fig. 11(a)), the change of the orbit
appears clear with triple loops that indicate the presence of the harmonics. All these changes of the
dynamic behaviour of the rotor near half and one-third of critical speeds may be considered as a
feature for detection of crack in the rotor shafts.
Finally, a parametric study with various crack depths is performed in order to show the

influence of the crack depth by considering the variation and change of orbit around one-half of
the first frequency. As illustrated in Fig. 12, the orbits decrease when the non-dimensional crack
depth m decreases. Moreover, the frequency at which 2� harmonics occurs increases as the crack
depth decreases, due to the reduced stiffness resulting from the crack, which changes the natural
frequencies. This is illustrated by plotting (in Fig. 13) the differences DX and DY at the middle
position of the shaft for various crack depths: as it can be seen, the position of the maximum
differences versus the frequency increases with decrease in the crack depth, as well as the
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Fig. 10. Evolution of the orbit at the position of the crack (Lcrack ¼ 0:35m) for the 2� resonance of the first frequency.
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differences DX and DY decrease. Therefore, the behaviour of the cracked rotor around one-half
of the natural frequencies and the observation of the associated orbits could provide crack
diagnostic information and could permit the estimation of the crack depth.
5. Conclusion

In this study, the influence of transversal cracks has been investigated: the change of the shaft
frequencies, as well as the harmonic component of the dynamical system response, and the
evolution of the orbits are the principal effects due to the presence of a crack in a rotating shaft.
More particularly, the changes in the nonlinear dynamical behaviour of the rotor system through
half-resonance speeds appear to be the classical signature for detecting the presence of a breathing
crack. Indeed, the distortion of the orbit and formation of a double loop and inside loop in the
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Fig. 11. Evolution of the orbits at various position on the shaft around the static deflection (a) 3� resonance of the first

frequency; (b) 2� resonance of the first frequency and (c) 2� resonance of the third frequency.
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orbit could be considered as one of the most practical indicators of the presence of a transversal
crack for health-monitoring purposes. Moreover, the observation of the orbit amplitudes at half-
resonance speeds could also provide crack diagnostic information about the crack depth: when
the crack depth increases, an increase of the orbit amplitudes is observed, as well as a decrease of
the shaft speed at which the 2� harmonic component of the dynamic response is maximum.
In this paper, the use of the AFT domain method and a path-following procedure allows

obtaining rapidly and efficiently the nonlinear dynamical behaviour of a rotating shaft with a
transverse breathing crack. This method has advantages in terms of computating time. It is easily
implemented.
Appendix A. Moments about the centroid for the cracked rotor

As illustrated in Fig. 1, the cross-section of the shaft at the location of the crack has asymmetric
area moments inertia about the neutral axis of bending. The area moments of inertia ~IX and ~IY
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Fig. 12. Evolution of the orbit at the position of the crack (Lcrack ¼ 0:35m) around the 2� resonance of the first

frequency, with the variation of the non-dimensional crack depth m (� � � � � � � m ¼ 0:25; – - – - – m ¼ 0:5; - - - m ¼ 0:75;
— m ¼ 1Þ:
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about the X and Y axes are defined as

~IX ¼

Z
A

Y 2 dA ¼

Z
A

Y 2 dX dY ; (A.1)

~IY ¼

Z
A

X 2 dA ¼

Z
A

X 2 dX dY ; (A.2)

where A defines the uncracked area of the cross-section. After integrating over the uncracked
area, one obtains

~IX ¼
R4

4
ð1� mÞð1� 4mþ 2m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� m2

p
þ cos�1ð1� mÞ

h i
; (A.3)
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Fig. 13. Evolution of the differences DX and DY between the cracked and uncracked shaft for the 2� resonance of the

first frequency at the middle of the shaft with the variation of the non-dimensional crack depth m (� � � � � � � m ¼ 0:25;
– - – - – m ¼ 0:5; - - - m ¼ 0:75; — m ¼ 1).
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~IY ¼
pR4

4
þ R4 2

3
ð1� mÞð2m� m2Þ3=2 þ 1

4
ð1� mÞð1� 4mþ 2m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� m2Þ

ph
þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� m2Þ

p�  !
; ðA:4Þ

where R and m are the shaft radius and the non-dimensional crack depth ðm ¼ a=RÞ: Then, the
moment of inertia about the centroidal axes IX and IY are obtained

IX ¼ ~IX ; (A.5)

IY ¼ ~IY � AX̄
2
; (A.6)

where X̄ defines the centroid of the cross-section. The uncracked area of cross-section A; and the
distance from the axis X to the centroid of the cross-section X̄ are given by

A ¼ R2 ð1� mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� m2

p
þ cos�1ð1� mÞ

h i
; (A.7)

X̄ ¼
2

3A
R3ð2m� m2Þ3=2: (A.8)
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